Phenomenology of Extra Dimensions

Eduardo Pontón Columbia University

February 16, 2006

Aspen Winter Conference

What do we expect at the Weak scale?

Higgs mass (hence EW scale) sensitive to high scale physics

Naturality: cutoff at around TeV → new physics!

- Supersymmetry (superpartners)
- Extra Dimensions (Kaluza-Klein modes)
- Higgs as pseudo NGB

Look for new particles at high-energy colliders. Theories predict specific relations between new and observed particles.

- Often new interactions are related to SM ones
- Lorentz transformation properties predicted: spins
- But also lots of "model building freedom" and new parameters

Exciting prospect of seeing extra dimensional nature at colliders Maybe a glimpse into even higher energies

Outline

Overview of selected X-Dim. scenarios

Can we see several KK levels?

A six-dimensional example: UED's

Missing energy signals

Resonances

Conclusions

Large "Gravitational" Dimensions

(Arkani-Hamed, Dimpoulous & Dvali)

- - Invisible to SM, but accesible to gravity

$$M_{\rm Pl}^2 = V_\delta M_D^{2+\delta}$$
 $M_D = \mathcal{O}({\rm TeV})$

Quantum gravity effects may lurk near the EW scale!

Almost a continuum of KK graviton states, with Planck suppressed couplings

Well defined couplings to matter: $\frac{1}{M_{\rm Pl}}h_{\mu\nu}T^{\mu\nu}$ or $\frac{1}{\Lambda_H^2}T^{\mu\nu}T_{\mu\nu}$

- \odot At LHC: Drell-Yan and diphoton production can probe scales up to a few TeV, depending on δ . (Giudice, Rattazzi & Wells, Mirabelli, Perelstein & Peskin, ...)

Warped Extra Dimensions

(Randall & Sundrum)

Solves hierarchy problem if Higgs on IR brane. Also $M_{\rm Pl}^2 \approx \frac{M^3}{k} e^{2k\pi r_c}$.

Signal very sensitive to fermion localization

If SM fermions localized on IR brane:

Graviton resonances: EW scale masses and couplings

(from Davoudiasl, Hewett & Rizzo)

Light fermions may be away from IR brane

(Carena, E.P, Tait & Wagner)

- Important constraints from EWPM Mixing due to localized Higgs
- First KK level may be within reach of LHC

Bulk Gauge Fields in TeV X-Dim

Gauge interactions get strong near the compactification scale

- Matte Ctiends sloode like that he present in the state of the many and the companions
 - tree-level couplings torgaks of the weak scale
 - Importare to a some a length of the solution o
 - Presentable little hierarchy problem remains

(Cheung & Landsberg)

- - Present constraints on the order of a few 100 GeV
 - Potential production of several KK levels!
- Some similarities with SUSY models with a degenerate spectrum
 - Superpartners ← First KK level states

(Cheng, Matchev & Schmaltz)

- "Small" EW corrections

Why 6 Dimensions?

Interesting theoretical constraints:

- Anomalies -> generations a multiple of three
 - predicts right-handed neutrinos

(Dobrescu & Poppitz)

- Discrete symmetries of the compactified theory
 - \bigcirc Z_2^{KK} : KK-Parity \longrightarrow LKP is stable (similar to 5D)
 - - Neutrinos are Dirac fermions

(Appelquist, Dobrescu, E.P. & Yee)

These symmetries are tightly related to the higher dimensional Lorentz invariance

Useful to distinguish between

Tree-level effects

Loop-level effects

Tree-level Structure

Tree-level spectrum:
$$M_{j,k}^2 = \frac{j^2 + k^2}{R^2}$$

- In detail: 1/R, $\sqrt{2}/R$, 2/R, ... (1,0) (1,1) (2,0) does not exist in 5D
- n-th KK level states degenerate at tree-level

Couplings determined by wavefunction profiles (boundary cond.)

KK number conservation: related to momentum conservation

At tree-level: only pair production of KK modes!

Radiative corrections

Low-energy chiral theory requires "singularities"

- → Localized operators and new effects!
- Mass splittings: depend on quantum numbers
- New interactions, e.g.

$$P_{KK} = (-1)^{j+k}$$

- \bigcirc Theory has a cutoff at $\Lambda \sim \mathcal{O}(10)/R$ (when QCD gets strong)
- Localized operators receive contributions from
 - \odot Unknown UV completion at Λ (assume NDA philosophy)
 - $\$ "Known" physics below $\$ (loop induced and logarithmically enhanced)

KK Spectrum in 6D

1-loop leading order mass corrections take the form

$$\delta M_{j,k}^F = \frac{1}{16\pi^2} \ln \frac{\Lambda^2}{\mu^2} C_F M_{j,k}$$

One finds:

$$C_{A_{\mu}} = g_4^2 \left(\frac{17}{3} C(G) - \frac{2}{3} \sum_{\Psi} T(r) - \frac{1}{2} \sum_{\Phi} T(r) \right)$$

$$C_{A_{H}} = g_4^2 \left(9 C(G) - 4 \sum_{\Psi} T(r) + \frac{7}{2} \sum_{\Phi} T(r) \right)$$

$$C_{\Psi} = 5 \sum_{\Psi} g_4^2 C_2(\Psi) + \frac{3}{4} \sum_{i} |\lambda_{4,i}|^2$$

$$1000$$

$$S_{\Psi}$$

$$950$$

$$S_{\Psi}$$

$$850$$

$$800$$

$$750$$

Take these as a guide keeping in mind theoretical uncertainties

(1,1) level states

(E.P. & Wang)

Quarks and gluons should receive larger corrections than leptons and electroweak gauge bosons.

Scalars from Gauge fields

- One linear combination eaten by the massive gauge fields - Higgs Mech.

 - 6D and higher: new scalars
 - → "Spinless Adjoints"
- \bigcirc Interest leg state in items is a specific probability of the position of the probability of the probabi

$$G_H^a$$
 W_H^{\pm} W_H^3 B_H

- Interactions constrained by KK-parity and gauge invariance
 - No dimension-4 couplings to fermions or gluons
 - Higher dimension operators, e.g.

$$\overline{Q}\Gamma^M\Gamma^N\Gamma^LQ\,\partial_MG_{NL}$$
 or $G_{MN}G^{NL}G_L^M$

Scalars from Gauge fields

- ightharpoonup The couplings to gluons vanish! $f^{abc}G^{\mu\nu}_aG^b_{\mu\nu}\,G^{(j,k)c}_H=0$
- Couplings to fermions exist if $(-1)^{j+k} = +1$:

- But they can be produced in decays of KK quarks or fermions
- They decay into top quarks almost always!

Pair Production: the SUSY-like case

Involves KK-number conserving interactions

- 1st level states: cascade decays to LKP
 - Strong production of Q^1Q^1 Soft jets \longrightarrow hard!
 - → look for 3 or more lepton plus missing energy signal
 - \bigcirc Decays into W_1^{\pm} and $Z_1 \longrightarrow$ leptons "Gold-plated" mode: $\not\!\!E_T + 4$ leptons

(from Cheng, Matchev & Schmaltz)

- Heavier KK states (phase space suppression)
- Spin Measurements at hadron collider are challenging!

(Smillie and Weber; Datta, Kong & Matchev)

Vector Mode Production at the Tevatron

(Dobrescu, E.P & Burdman)

Single production (through KK *violating* interactions) of (1,1) and (2,0) states, e.g.

$$q\bar{q} \to G_{\mu}^{(1,1)}, W_{\mu}^{(1,1)3}, B_{\mu}^{(1,1)}$$

In 6D:

- © Couplings to fermions $g_s C_{qG} (\overline{q} \gamma^{\mu} T^a q) G_{\mu}^{(1,1)a}$
- Mass shifts

$$\delta M_{j,k}^2/M_{j,k}^2$$

controlled by independent fundamental parameters

$t \bar{t}$ Resonances at the Tevatron

(1,1) excitations of the gauge bosons have large BR into spinless adjoints, hence into $t\bar{t}$

or also

decay modes	$G^{(1,1)}_{\mu}$
$G_H^{(1,1)} + \text{jets}$	60.5
$W_H^{(1,1)3} + \text{jets}$	3.2
$W_H^{(1,1)\pm} + \text{jets}$	6.1
$B_H^{(1,1)} + \text{jets}$	4.8
$W_{\mu}^{(1,1)3} + \text{jets}$	4.3
$W_{\mu}^{(1,1)\pm} + \text{jets}$	7.0
$B_{\mu}^{(1,1)} + \text{jets}$	9.3
$t ar{t}$	0.5
$b ar{b}$	0.8
dijet (no $b\bar{b}$)	3.3

EW gauge bosons can also decay into top pairs

$t \bar{t}$ Resonances at the Tevatron

Three (potential) peaks:

$$G_H, W_{\mu}
ightarrow 1.1 imes M_{1,1}$$
 $W_H, B_{\mu}
ightarrow 0.97 imes M_{1,1}$ $B_H
ightarrow 0.86 imes M_{1,1}$

Current limit from CDF with 682 pb^{-1} :

> 1-2 pb at 95% C.L. for $350 \text{ GeV} < M(t\overline{t}) < 600 \text{ GeV}$

→ No limit on 1/R

Vector Mode Production at the LHC

Single production at the LHC

Initial gg or $qg \rightarrow G^{(1,1)}$ (not log enhanced)

 \rightarrow $q\bar{q} \rightarrow G^{(1,1)}, W^{(1,1)3}, B^{(1,1)}$ probably still dominant

Resonances at the LHC

In 6D: (Dobrescu, E.P & Burdman)

In 5D: (from Datta, Kong & Matchev)

Conclusions

- Extra dimensions at the TeV scale are well motivated, and can be observed at high-energy colliders
- We may see several KK levels in UED scenarios!
 - striking manifestation of extra dimensions
- Observation of (1,1) level at $\sim \sqrt{2}/R$ and (2,0) level at $\sim 2/R$ allows a clear distinction between 5D and 6D
 - \longrightarrow Should hold for $B_{\mu}^{(1,1)}$ (small corrections)
- New scalars in 6D with large couplings to tops
 - \rightarrow Look for bumps in $t\bar{t}$ at the Tevatron and LHC!
- $\Theta = B_{\mu}^{(1,1)}$ resonance in dilepton channel also promising
- The SUSY/UED "confusion" is probably resolvable at hadron colliders, even in the absence of a spin measurement